ATM localization and gene expression in the adult mouse eye

نویسندگان

  • Julia Leemput
  • Christel Masson
  • Karine Bigot
  • Abdelmounaim Errachid
  • Anouk Dansault
  • Alexandra Provost
  • Stéphanie Gadin
  • Said Aoufouchi
  • Maurice Menasche
  • Marc Abitbol
چکیده

PURPOSE High levels of metabolism and oxygen consumption in most adult murine ocular compartments, combined with exposure to light and ultraviolet (UV) radiation, are major sources of oxidative stress, causing DNA damage in ocular cells. Of all mammalian body cells, photoreceptor cells consume the largest amount of oxygen and generate the highest levels of oxidative damage. The accumulation of such damage throughout life is a major factor of aging tissues. Several multiprotein complexes have recently been identified as the major sensors and mediators involved in the maintenance of DNA integrity. The activity of these complexes initially seemed to be restricted to dividing cells, given their ultimate role in major cell cycle checkpoints. However, it was later established that they are also active in post-mitotic cells. Recent findings demonstrate that the DNA damage response (DDR) is essential for the development, maintenance, and normal functioning of the adult central nervous system. One major molecular factor in the DDR is the protein, ataxia telangiectasia mutated (ATM). It is required for the rapid induction of cellular responses to DNA double-strand breaks. These cytotoxic DNA lesions may be caused by oxidative damage. To understand how ATM prevents oxidative stress and participates in the maintenance of genomic integrity and cell viability of the adult retina, we determined the ATM expression patterns and studied its localization in the adult mouse eye. METHODS Atm gene expression was analyzed by RT-PCR experiments and its localization by in situ hybridization on adult mouse ocular and cerebellar tissue sections. ATM protein expression was determined by western blot analysis of proteins homogenates extracted from several mouse tissues and its localization by immunohistochemistry experiments performed on adult mouse ocular and cerebellar tissue sections. In addition, subcellular localization was realized by confocal microscopy imaging of ocular tissue sections, with a special focus on retinal cells. RESULTS Using RT-PCR, we detected a band of the expected size, with its sequence matching the amplified Atm cDNA sequence. Atm mRNA was detected in most cell bodies of the adult mouse eye by in situ hybridization of ocular tissue sections with specific digoxigenin-labeled PCR-amplified cDNA probes. Western blotting with different specific antibodies revealed bands corresponding to the expected sizes of ATM and its active forms (ATMp). These bands were not observed in the analysis of protein homogenates from Atm-deficient mouse tissues. ATM immunoreactivity was detected in the nucleus of all adult mice retinal cells and in most non-neuronal ocular cell types. The active phosphorylated form of ATM was also present in the retina as well as in non-neuronal cells of the adult mouse eye. However, its subcellular localization differed as a function of the cell type examined. A major finding of this study was that ATMp immunostaining in photoreceptor cells was exclusively in the cytoplasm, whereas ATM immunostaining was only in the nucleus of these cells. Furthermore, the specific and distinct ATM and ATMp immunolabeling patterns in photoreceptor cells were identical to those observed in the adult mouse cerebellar granule cells. CONCLUSIONS We report the expression profile of Atm gene and protein in the adult mouse eye. In particular, we observed a difference between the localization patterns of the active and inactive forms of ATM in photoreceptor cells. These localization patterns suggest that ATM and its phosphorylated activated form may be involved in both the protection of cells from oxidative damage and the maintenance of ocular cell structure and function. The protection mechanisms mediated by the two forms of ATM appear to be particularly important in maintaining photoreceptor integrity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examination of the immunohistochemical localization and gene expression by RT-PCR of the oxytocin receptor in diabetic and non-diabetic mouse testis

Objective(s): The aim of this study was to determine Oxytocin receptor (OTR) gene expression and localization in diabetic and non-diabetic mouse testes by RT-PCR and immunohistochemistry, respectively. Materials and Methods: In this study, 18 male BALB/c mice (8–12 weeks old) were used and divided into three groups: diabetic, sham, and control. Streptozotocin (STZ) was applied to the diabetic g...

متن کامل

P-92: Assessment of Stem Cells in Adult Mouse Ovaries during Estrous Cycle

Background: The concepts of reproductive biology were changed by stating the ovarian reserve in postnatal mammalian females is replenished. The aim of this study was to investigate the expression of OCT4 in the mice ovarian tissue during different stages of mouse estrous cycle. Materials and Methods: The mice were considered as pro-estrous, estrous, met-estrous and di-estrous based on the cell ...

متن کامل

Analysis of Exon 19 and 39 of ATM Gene in Brain Tumors; Considering the P53 Accumulation

Many studies have been focused on cytogenetic and molecular genetic defects in brain tumors; therefore the role of ATM as a tumor suppressor gene in these tumors is poorly considered. In this study mutation analysis of exon 19 and 39 of ATM gene and P53 accumulation were investigated by PCR-SSCP, sequencing, and flow cytometry . Four polymorphisms including D1853N, IVS 38-8 T?C, F858L, P872T we...

متن کامل

Gene Expression Profile of CatSper3 and CatSper4 during Postnatal Development of Mouse Testis

Channel activities, particularly those of calcium channels, have vital roles in the process of sperm maturation, motility and sperm-egg interaction. A group of the recently discovered ion channels associated with these processes is four novel channel-like proteins known as CatSper (cation channel sperm) gene family. CatSper1 and CatSper2 show sperm specific expression patterns. However, neither...

متن کامل

O-15: Reduced Fertilization After ICSI and Abnormal Phospholipase C Zeta Presence in Spermatozoa from the Wobbler Mouse

Background: Failed fertilization after intracytoplasmic sperm injection (ICSI) can be due to a reduced oocyte-activation capacity caused by reduced concentrations and abnormal localization of the oocyte-activation factor phospholipase C (PLC) zeta. Patients with this condition can be helped to conceive by artificial activation of oocytes after ICSI with calcium ionophore (assisted oocyte activa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular Vision

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2009